December 5, 2013 by  

Photosynthesis, By realising an artificial quantum system, physicists at Heidelberg University have simulated key processes of photosynthesis on a quantum level with high spatial and temporal resolution. In their experiment with Rydberg atoms the team of Prof. Dr. Matthias Weidemüller and Dr. Shannon Whitlock discovered new properties of energy transport. This work is an important step towards answering the question of how quantum physics can contribute to the efficiency of energy conversion in synthetic systems, for example in photovoltaics.

The new discoveries, which were made at the Center for Quantum Dynamics and the Institute for Physics of Heidelberg University, have now been published in the journal Science.

In their research, Prof. Weidemüller and his team begin with the question of how the energy of light can be efficiently collected and converted elsewhere into a different form, e.g. into chemical or electric energy. Nature has found an especially efficient way to accomplish this in photosynthesis. Light energy is initially absorbed in light-harvesting complexes — an array of membrane proteins — and then transported to a molecular reaction centre by means of structures called nanoantennae; in the reaction centre the light is subsequently transformed into chemical energy. “This process is nearly 100 percent efficient. Despite intensive research we’re still at a loss to understand which mechanisms are responsible for this surprisingly high efficiency,” says Prof. Weidemüller. Based on the latest research, scientists assume that quantum effects like entanglement, where spatially separated objects influence one another, play an important role.

In their experiments the researchers used a gas of atoms that was cooled down to a temperature near absolute zero. Some of the atoms were excited with laser light to high electric states. The excited electron of these “atomic giants,” which are called Rydberg atoms, is separated by macroscopic distances of almost a hair’s breadth from the atomic nucleus. Therefore these atoms present an ideal system to study phenomena at the transition between the macroscopic, classical world and the microscopic quantum realm. Similar to the light-harvesting complexes of photosynthesis, energy is transported from Rydberg atom to Rydberg atom, with each atom transmitting its energy packages to surrounding atoms, similar to a radio transmitter.

Report to Team

Please feel free to send if you have any questions regarding this post , you can contact on

Disclaimer: The views expressed on this site are that of the authors and not necessarily that of U.S.S.POST.


Comments are closed.